下标对中的最大距离

1855. 下标对中的最大距离 (Medium)

给你两个 非递增 的整数数组 nums1​​​​​​ 和 nums2​​​​​​ ,数组下标均 从 0 开始 计数。

下标对 (i, j)0 <= i < nums1.length0 <= j < nums2.length 。如果该下标对同时满足 i <= jnums1[i] <= nums2[j] ,则称之为 有效 下标对,该下标对的 距离j - i​​ 。​​

返回所有 有效 下标对 (i, j) 中的 最大距离 。如果不存在有效下标对,返回 0

一个数组 arr ,如果每个 1 <= i < arr.length 均有 arr[i-1] >= arr[i] 成立,那么该数组是一个 非递增 数组。

 

示例 1:

输入:nums1 = [55,30,5,4,2], nums2 = [100,20,10,10,5]
输出:2
解释:有效下标对是 (0,0), (2,2), (2,3), (2,4), (3,3), (3,4) 和 (4,4) 。
最大距离是 2 ,对应下标对 (2,4) 。

示例 2:

输入:nums1 = [2,2,2], nums2 = [10,10,1]
输出:1
解释:有效下标对是 (0,0), (0,1) 和 (1,1) 。
最大距离是 1 ,对应下标对 (0,1) 。

示例 3:

输入:nums1 = [30,29,19,5], nums2 = [25,25,25,25,25]
输出:2
解释:有效下标对是 (2,2), (2,3), (2,4), (3,3) 和 (3,4) 。
最大距离是 2 ,对应下标对 (2,4) 。

示例 4:

输入:nums1 = [5,4], nums2 = [3,2]
输出:0
解释:不存在有效下标对,所以返回 0 。

 

提示:

  • 1 <= nums1.length <= 105
  • 1 <= nums2.length <= 105
  • 1 <= nums1[i], nums2[j] <= 105
  • nums1nums2 都是 非递增 数组

相关话题

[贪心算法] [双指针] [二分查找]


解法