一个图中连通三元组的最小度数

1761. 一个图中连通三元组的最小度数 (Hard)

给你一个无向图,整数 n 表示图中节点的数目,edges 数组表示图中的边,其中 edges[i] = [ui, vi] ,表示 ui 和 vi 之间有一条无向边。

一个 连通三元组 指的是 三个 节点组成的集合且这三个点之间 两两 有边。

连通三元组的度数 是所有满足此条件的边的数目:一个顶点在这个三元组内,而另一个顶点不在这个三元组内。

请你返回所有连通三元组中度数的 最小值 ,如果图中没有连通三元组,那么返回 -1 。

 

示例 1:

输入:n = 6, edges = [[1,2],[1,3],[3,2],[4,1],[5,2],[3,6]]
输出:3
解释:只有一个三元组 [1,2,3] 。构成度数的边在上图中已被加粗。

示例 2:

输入:n = 7, edges = [[1,3],[4,1],[4,3],[2,5],[5,6],[6,7],[7,5],[2,6]]
输出:0
解释:有 3 个三元组:
1) [1,4,3],度数为 0 。
2) [2,5,6],度数为 2 。
3) [5,6,7],度数为 2 。

 

提示:

  • 2 <= n <= 400
  • edges[i].length == 2
  • 1 <= edges.length <= n * (n-1) / 2
  • 1 <= ui, vi <= n
  • ui != vi
  • 图中没有重复的边。

相关话题

[]


解法