灌溉花园的最少水龙头数目

1326. 灌溉花园的最少水龙头数目 (Hard)

在 x 轴上有一个一维的花园。花园长度为 n,从点 0 开始,到点 n 结束。

花园里总共有 n + 1 个水龙头,分别位于 [0, 1, ..., n]

给你一个整数 n 和一个长度为 n + 1 的整数数组 ranges ,其中 ranges[i] (下标从 0 开始)表示:如果打开点 i 处的水龙头,可以灌溉的区域为 [i -  ranges[i], i + ranges[i]] 。

请你返回可以灌溉整个花园的 最少水龙头数目 。如果花园始终存在无法灌溉到的地方,请你返回 -1 。

 

示例 1:

输入:n = 5, ranges = [3,4,1,1,0,0]
输出:1
解释:
点 0 处的水龙头可以灌溉区间 [-3,3]
点 1 处的水龙头可以灌溉区间 [-3,5]
点 2 处的水龙头可以灌溉区间 [1,3]
点 3 处的水龙头可以灌溉区间 [2,4]
点 4 处的水龙头可以灌溉区间 [4,4]
点 5 处的水龙头可以灌溉区间 [5,5]
只需要打开点 1 处的水龙头即可灌溉整个花园 [0,5] 。

示例 2:

输入:n = 3, ranges = [0,0,0,0]
输出:-1
解释:即使打开所有水龙头,你也无法灌溉整个花园。

示例 3:

输入:n = 7, ranges = [1,2,1,0,2,1,0,1]
输出:3

示例 4:

输入:n = 8, ranges = [4,0,0,0,0,0,0,0,4]
输出:2

示例 5:

输入:n = 8, ranges = [4,0,0,0,4,0,0,0,4]
输出:1

 

提示:

  • 1 <= n <= 10^4
  • ranges.length == n + 1
  • 0 <= ranges[i] <= 100

相关话题

[贪心算法] [动态规划]


解法