子数组和排序后的区间和

1508. 子数组和排序后的区间和 (Medium)

给你一个数组 nums ,它包含 n 个正整数。你需要计算所有非空连续子数组的和,并将它们按升序排序,得到一个新的包含 n * (n + 1) / 2 个数字的数组。

请你返回在新数组中下标为 left 到 right (下标从 1 开始)的所有数字和(包括左右端点)。由于答案可能很大,请你将它对 10^9 + 7 取模后返回。

 

示例 1:

输入:nums = [1,2,3,4], n = 4, left = 1, right = 5
输出:13 
解释:所有的子数组和为 1, 3, 6, 10, 2, 5, 9, 3, 7, 4 。将它们升序排序后,我们得到新的数组 [1, 2, 3, 3, 4, 5, 6, 7, 9, 10] 。下标从 le = 1 到 ri = 5 的和为 1 + 2 + 3 + 3 + 4 = 13 。

示例 2:

输入:nums = [1,2,3,4], n = 4, left = 3, right = 4
输出:6
解释:给定数组与示例 1 一样,所以新数组为 [1, 2, 3, 3, 4, 5, 6, 7, 9, 10] 。下标从 le = 3 到 ri = 4 的和为 3 + 3 = 6 。

示例 3:

输入:nums = [1,2,3,4], n = 4, left = 1, right = 10
输出:50

 

提示:

  • 1 <= nums.length <= 10^3
  • nums.length == n
  • 1 <= nums[i] <= 100
  • 1 <= left <= right <= n * (n + 1) / 2

相关话题

[排序] [数组]


解法