矩阵转换后的秩

1632. 矩阵转换后的秩 (Hard)

给你一个 m x n 的矩阵 matrix ,请你返回一个新的矩阵 answer ,其中 answer[row][col] 是 matrix[row][col] 的秩。

每个元素的  是一个整数,表示这个元素相对于其他元素的大小关系,它按照如下规则计算:

  • 秩是从 1 开始的一个整数。
  • 如果两个元素 p 和 q 在 同一行 或者 同一列 ,那么:
    • 如果 p < q ,那么 rank(p) < rank(q)
    • 如果 p == q ,那么 rank(p) == rank(q)
    • 如果 p > q ,那么 rank(p) > rank(q)
  •  需要越  越好。

题目保证按照上面规则 answer 数组是唯一的。

 

示例 1:

输入:matrix = [[1,2],[3,4]]
输出:[[1,2],[2,3]]
解释:
matrix[0][0] 的秩为 1 ,因为它是所在行和列的最小整数。
matrix[0][1] 的秩为 2 ,因为 matrix[0][1] > matrix[0][0] 且 matrix[0][0] 的秩为 1 。
matrix[1][0] 的秩为 2 ,因为 matrix[1][0] > matrix[0][0] 且 matrix[0][0] 的秩为 1 。
matrix[1][1] 的秩为 3 ,因为 matrix[1][1] > matrix[0][1], matrix[1][1] > matrix[1][0] 且 matrix[0][1] 和 matrix[1][0] 的秩都为 2 。

示例 2:

输入:matrix = [[7,7],[7,7]]
输出:[[1,1],[1,1]]

示例 3:

输入:matrix = [[20,-21,14],[-19,4,19],[22,-47,24],[-19,4,19]]
输出:[[4,2,3],[1,3,4],[5,1,6],[1,3,4]]

示例 4:

输入:matrix = [[7,3,6],[1,4,5],[9,8,2]]
输出:[[5,1,4],[1,2,3],[6,3,1]]

 

提示:

  • m == matrix.length
  • n == matrix[i].length
  • 1 <= m, n <= 500
  • -109 <= matrix[row][col] <= 109

相关话题

[贪心算法] [并查集]


解法